A Sustainable Career for Architects, Engineers and Designers

The State of Compliance for housing design in Australia. A summary of the issues confronting the BCA and 2nd Generation NatHERS and how professionals can make a difference in the innovation process.

> Trevor Lee Energy Partners Manuka, ACT +61 2 6260 6173 www.exemplary.com.au

Seminar Format

Questions after each Section

- Introduction to the Regulations
- Envelope Requirements
- Fenestration (including roof glazing)
- From 5 Stars to 6 Stars
- Services: lighting, hot water, HVAC
- Mandatory Disclosure

Assistance with Creating this Presentation

Yuelin Wang (Energy Partners, Manuka ACT, +61 2 6260 6173) David Howard (Partners Energy Management, Alstonville NSW, +61 421 381 005) Peter Lyons, PhD (Peter Lyons & Associates, Canberra, ACT, +61 408 808 556)

Seminar Format Questions after each Section

- Introduction to the Regulations

- Envelope Requirements
- Fenestration (including roof glazing)
- From 5 Stars to 6 Stars
- Services: lighting, hot water, HVAC
- Mandatory Disclosure

© Trevor Lee Energy Partners Manuka, ACT <u>www.exemplary.com.au</u>

On 30 April 2009, the Council of Australian Governments (COAG) announced that it would request the Australian Building Codes Board (ABCB) to increase the energy efficiency provisions in the 2010 edition of the Building Code of Australia (BCA).

In brief, COAG requested the ABCB to increase the energy efficiency provisions so that the 2010 BCA requires:

(i) a 6-star energy rating, or equivalent, for new residential buildings; *and*

(ii) a significant increase in the energy efficiency requirements for all new commercial buildings.

Volume One, Section J Volume Two, Section 3.12

Q: When does it apply?

A: All the time!

- All projects must have a report done at the equivalent of BA or Building Certificate stage
- Some classes have an exemption for certain parts of Section J / 3.12
- Definition of envelope plays an important role

- for purposes of Section J, means the parts of a building's *fabric* that separate a *conditioned space* or *habitable room* from –

the exterior of the building; or

a non-conditioned space including -(i) the floor of a rooftop plant room, lift-machine room or the like; and.....

CONDITIONED SPACE

- means a space within a building where the environment is likely, by the intended use of the space, to be controlled by *air-conditioning*, but does not include -

a non-habitable room of Class 2 building or Class 4 part of a building in which a heater with a capacity of not more than 1.2 kW or 4.3 MJ/hour provides the airconditioning

- Regulations will require more efficient building envelopes
- Deemed-to-Satisfy (DTS) will generally create more costly buildings than SIMULATION solutions (using 2nd Generation NatHERS tools)
- Glazing and window frames are only one component of a building – but increasingly important

Thermal Calculation Method (Software)

Class 1, 2 and 10a buildings

BERS ProFirstRate5

which both depend on the engine in AccuRate

 © Peter Lyons & Associates 2010
 Canberra, Australia
 www.fenestralia.com

 David Howard
 Partners Energy
 Alstonville, Australia
 www.partnersenergy.com.au

BCA Climate Zones: 8 of them, tropical to alpine

© Trevor Lee Energy Partners Manuka, ACT www

www.exemplary.com.au

Climate data

- DB Temperature
- Absolute Humidity
- Beam Radiation
- Diffuse Radiation
- Wind Speed
- Wind Direction
- Cloud Cover

Data at hourly intervals for one year; Each postcode assigned 1 (2 or 3) of 69 (soon 80) climate files

Climate data - now almost anywhere

- DB Temperature
- Absolute Humidity
- Beam Radiation
- Diffuse Radiation
- Wind Speed
- Wind Direction
- Cloud Cover

Seminar Format

Questions after each Section

- Introduction to the Regulations
- Envelope Requirements
- Fenestration (including roof glazing)
- From 5 Stars to 6 Stars
- Services: lighting, hot water, HVAC
- Mandatory Disclosure

A high-performance building envelope cuts operational energy use

- The best high-performance buildings are a new generation of *Zero-Energy Buildings* which produce no greenhouse gas (GHG) emissions in their operation
- ClimateWorks (www.climateworksaustralia.com, 2010) estimates that Australia's commercial buildings can contribute three-quarters of the total, potential building-related GHG reductions between now and 2020. This translates into 16 million tonnes (Mt) of emissions saved – and at a nett savings to society – not a cost.
- Beyond Zero Emissions (www.beyondzeroemissions.org, 2010) "A concentrated effort to flatten the Victorian winter gas usage peak would yield major gains in flattening the Australian energy demand profile over the year. The flattening would be achieved primarily by thermal insulation of Victorian commercial buildings and households. This can reduce heating loads by a factor of 2-4."

Building Fabric 09/10 Comparison

Climate Z	one 7	<u>BCA 2009</u>	<u>BCA 2010</u>		
Structure		Total R value	Total R value		
	Solar Absorptance				
	Light (< 0.4)	4.3	4.1		
Ceiling/Roof	Mid (0.4 - 0.6)	4.3	4.6		
	Dark (> 0.6)	4.3	5.1		
	Wall Density				
	< 220 kg/m ²	2.4	2.8		
External Walls			External glazing C _u reduces by 15% and wall incorporates insulation >R1.0 OR		
	> 220 kg/m ²	incorporates insulation >R1.0	External glazing C _u reduces by 20% and wall incorporates insulation >R0.5 OR		
			incorporates insulation >R1.5		
Suspended	Floor				
Enclose Unenclos	ed sed	1.5 2.5	2.75		
Slab with inslab hea	ating or cooling	Edge Insulation R1.0	Edge Insulation R1.0		
Concrete Slab o	on Ground	No underslab insulation required	No underslab insulation required		
Slab with inslab hea	ating or cooling	Edge Insulation R1.0	Edge Insulation R1.0		

© Trevor Lee

Energy Partners

Manuka, ACT

Building Fabric – Roofs

Table 3.12.1.1a ROOF AND CEILING—MINIMUM TOTAL R-VALUE

		2	2					
Climate zone	1	Altitude less than 300 m	Altitude 300 m or more	3	4 and 5	6 and 7	8	
Direction of heat flow	Do	ownwards	Downwards upwards	and	rds			
Minimum Total R- Value for a roof with an upper surface solar absorptance value of not more than 0.4		4.1	4.1		4	6.3		
of more than 0.4 but not more than 0.6		4.6	4.6		4	.6	6.3	
of more than 0.6	5.1 5.1 5.1							
Note: Altitude means the building is to	he hei be co	ght above the	Australian H	eigh	t Datur	m at th	e location	

Typical Absorptance Values

Colour	Value
Slate (dark grey)	0.9
Red, green	0.75
Yellow, buff	0.6
Zinc aluminium — dull	0.55
Galvanised steel — dull	0.55
Light grey	0.45
Off white	0.35
Light cream	0.3

For Residential ADJUSTMENT OF MINIMUM R-VALUE FOR LOSS OF CEILING INSULATION, Refer to Commercial Building Fabric Table J1.3 (a) .

Seminar Format

Questions after each Section

- Introduction to the Regulations
- Envelope Requirements
- Fenestration (including roof glazing)
- (and just a little on simulation as a compliance tool)
- From 5 Stars to 6 Stars
- Services: lighting, hot water, HVAC
- Mandatory Disclosure

The solar spectrum (McCluney & Jindra, 2001)

Worldwide international standard for fenestration energy and visible transmittance calculations

Complete procedure with algorithms

enables

simulation-based energy rating of windows, glazed doors and skylights

Complete window heat-balance equation

U-value (thermal transmittance, U-factor)

Lawrence Berkeley National Laboratory, 2000

U-value

```
= measure of heat flow from warm side to
cold side / (area x temp difference)
= watts / (square metres x Kelvin)
= W/m^2 K
where
1 Kelvin (1K) = temp diff of 1°C
and
0 \text{ Kelvin} = -273.15^{\circ}\text{C}
           = absolute zero
E.g:
Single-glazed aluminium window:
                                         U = 7.5
Double-glazed low-e argon, timber frame:
                                         U = 1.8
```

SHGC (solar heat gain coefficient)

SHGC

$$= T_s + n^*A_s$$

a.k.a. total solar transmittance

a.k.a. solar factor

a.k.a. g-value

Fraction absorbed then re-radiated and convected = n^*A_s

Fraction transmitted directly $= T_s$

Single-glazed aluminium window:0.7Double-glazed spectrally selective low-e argon,0.2

© Trevor Lee

Energy Partners

Manuka, ACT

WINDOW - THERM - OPTICS suite of software from Lawrence Berkeley National Laboratory

windows.lbl.gov/software

© Trevor Lee

Energy Partners

Manuka, ACT

www.exemplary.com.au

European EN vs. NFRC / AFRC ratings

Why are there different numbers for same product?

- U-value and g-value (SHGC) depend partly on indoor and outdoor air movement
- When it is windy, more heat flows through the glass and is carried away by the wind. (U-value is based on assumpton that outdoors colder than indoors)
- More wind \rightarrow higher U-value
- BUT more wind → lower SHGC. Why? Because the heated glass is cooled more effectively
- Main difference between EN and NFRC/AFRC reference conditions is that NFRC is windier. *But it is still the same window!*
- Clearly, performance comparisons must be based on same set of conditions
- No selective quoting! [E.g. EN for U-value (looks lower; NFRC for SHGC (sometimes looks lower)]
- Building Code of Australia requires NFRC/AFRC-based numbers

WINDOW 6 & THERM 6

Bringing it all together : glazing, blind, frame

- → Whole-system performance data
- → US Department of Energy has invested over US\$10 million in WINDOW 4, 5, 6 since 1990
- → Includes \$2M to add shading layers and diffuse glazings to new WINDOW 6
- → All window technologies are important (no playing favourites)

Robin Mitchell,

Lawrence Berkeley National Laboratory Windows and Daylighting Group, 2009

www.exemplary.com.au

WINDOW 6 – THERM 6 Validation Research Project

- Extensive project: 26 window/attachment combinations
- U-value and SHGC tests (ATI Lab)
- Comparison U-value and SHGC simulations (W6/T6) (Carli, Inc.)
- Agreement so far generally very good

🗄 Shading Layer Library (C:\Program Files\LBNL\WINDOW6\w6 Pre-Version-6.2.30.mdb)	
File Edit Libraries Record Tools View Help	
🗅 🚅 🗔 👗 🛍 🛍 🗁 🏢 🔳 😣 🖌 🔺 🕨 🕅 🔠 🗮 🌒 🔢 🛟 🖾 # 🚿 🌾 😵 🕅	1
Shading Layer Library List New Copy Delete Save Shading Layer Library D #: 8 Name: Venetian C45 Product Name: Maturacture: ISO 15039 appendix Type: Venetian blind, horizontal Material: 30103 Slat Metal C Venetian Blind Spacing: 12.0 mm Tilt: 45 degrees Iiit angle: 45 degrees Blind thickness: 11.3 mm Bise: 3.000 mm Help Comment	
For Help, press F1 Mode: NFRC S	

Conducted plus radiant summer heat gains through north-facing 3mm clear glass at noon

SKYLIGHTS – rectangular, shafted, tubular

BCA Glazing Calculator 2010: what's new? ?????

- The Glazing Calculator software continues as a more rapid and user-friendly alternative to the manual glazing tables in Part J2 and 3.12.2.2 (11 pages!).
- For 2010 this free, downloadable software tool has been revised to be consistent with new stringencies and clauses described above. Glazing Calculators are available for Volume One and Volume Two, in Excel 2003 and Excel 2007 versions.
- Note that the Glazing Calculator does *not* actually calculate fenestration energy performance. Rather it requires users to input whole-system Uvalues and SHGCs into a spreadsheet to determine if the proposed building's annual energy performance is BCA compliant. Such whole-product window, door and skylight energy ratings must come from AFRC ratings, NFRC ratings or soon, in the case of skylights, WERS for Skylights.

Thermal Calculation Method (Software)

Class 1, 2 and 10a buildings

BERS Pro 4.1
 FirstRate5

which both depend on the engine in AccuRate

AccuRate house energy rating report

Large	
View from street	
Ground	Family Taning Cally Taning C
Upper	

Tony Isaacs, 2007 and SWA 2009-2010

AccuRate V1.1.4.1 NFRC Glazing version

Nationwide House Energy

ENERGY RATING		Rating Scheme		ENERGY RATING
		Project Details		
Project Name: SWA	2009			
File Name:		_		
Postcode: 5000		Climate Ze	one: 16	
Design Option: Nor	th			
Description: Large NFRC R2,0R	House, 2-storey, 241.3 n version of AR FL walls, R5.0 ceiling, I	n2, U=6.34, SHGC=0.2	29	
	_	Client Details		
Client Name:				
Phone:	Fax:	Em	ail:	
Postal Address:				
Site Address:				
Council submitted t	o (if known by assesso	r):		
		Assessor Details		
Assessor Name: Pete	r Lyons		Assessor N	io.
Phone:0408 808 556	5 Fax:(02) 610	03 9033 Em	ail:peter.lyons@fenes	stralia.com
Assessment Date:11	/05/2009		Time:10:0	1
Project Code:	and the second second		and the second second	100
Assessor Signature:	3			
PALCULATED EN	EDCV DEOLIDEMEN	TC* (DESEA DCH V	EDSION, DESULT	S NOT FOR PATING
Heating	Cooling (sensible)	Cooling (latent)	Total Energy	Units
46.9	53.9	25	103.3	MI/m ² annum
* These energy requirements I of the intended occupants. The running costs. The settings us	have been calculated using a standa ey should be used solely for the put ad for the simulation are shown in t	rd set of occupant behaviours and poses of rating the building. They he building data report.	d so do not necessarily represen y should not be used to infer ac	nt the usage pattern or tifestyle tual energy consumption or
REA-ADJUSTED E	NERGY REQUIREM	ENTS (RESEARCH	VERSION: RESULT	IS NOT FOR RATIN
Heating	Cooling (sensible)	Cooling (latent)	Total Energy	Units
50.3	57.8	2.7	110.7	MJ/m ² .annum

Star Rating (RESEARCH VERSION: RESULTS NOT FOR RATING)

125

237.3 m²

5.4 STARS

46

22

3

70

Conditioned floor area

227

165

1 Star

480

325

Area-adjusted star band score thresholds 9 Stars 10 Stars 2 Stars **3 Stars** 4 Stars 5 Stars 6 Stars 7 Stars 8 Stars

96

© Trevor Lee **Energy Partners**

© Trevor Lee Energy Partners Manuka, ACT <u>www.exemplary.com.au</u>

EnergyPlus, for commercial and residential buildings US\$6 million a year funding; free to acquire; upgrades every April & October

www.energyplus.gov

Residential (Class 1 - 4 & 10), Commercial (Classes 2 - 9)

Energy Partners Mai

Manuka, ACT w

DesignBuilder: User-friendly, 3D graphical front end for EnergyPlus

designbuilder.com.au

Residential (Class 1 - 4 & 10) Commercial (Classes 2 – 9)

- Training and support for DesignBuilder and EnergyPlus
- Supported and sponsored by Engineers Australia

© Trevor Lee

Energy Partners M

Manuka, ACT

www.exemplary.com.au

Some commercial building simulation tools – 2010

Much more info at: <u>www.eere.energy.gov/buildings/tools_directory</u> but this site still not exhaustive

Non-residential and commercial buildings

...and many others

•	DOE-2 (<i>e.g.</i> eQUEST)	www.doe2.com	Free
•	EnergyPlus	www.energyplus.gov	Free
•	DesignBuilder	www.designbuilder.com.au	Commercial
•	EFEN	www.designbuildersoftware.co	om Comm.
•	Energy Express (CSIRO)	www.hearne.com.au	Commercial
•	ECOTECT	squ1.com	Commercial
•	ESP-r	www.esru.strath.ac.uk/Programs/	ESP-r.htm
			Open source
•	IES	www.iesve.com/content/	Commercial
•	CAMEL, BEAVER	www.ozemail.com.au/~acadsl	bsg Comm.
•	TAS	http://212.23.11.237/default.ht	tm Comm.
•	TRNSYS	sel.me.wisc.edu/trnsys	Comm.

© Trevor Lee Energy Partners Manuka, ACT <u>www.exemplary.com.au</u>

Seminar Format

Questions after each Section

- Introduction to the Regulations
- Envelope Requirements
- Fenestration (including roof glazing)
- From 5 Stars to 6 Stars
- Services: lighting, hot water, HVAC
- Mandatory Disclosure

Glazing Calculator 2009 – Aluminium Frame Single Glazing

GLAZING CALCULATOR FOR USE WITH PART 3.12.2, BCA VOLUME TWO (HOUSING)

HELP

Climate zone	Building name/d	lescription			CONSTANTS	Type A	Type B	
7 5 Star Dewlling Canberra C _U / C _{SHGC} 1.4 / 0.26								
Storey	Floor Construct'n	Туре А	Type B		ALLOWANCES			
1	Area of Floor	120m ²			C _U x Area	168.0		
	Air Movement	S		Note: Air Movement level must be separately verified	C _{SHGC} x Area	31.2		
	Glazing area	+++++++++++		(22% of area of floor Type A)				

Number of rows preferred in table below

12 (as currently displayed)

GLAZING ELEMENTS, ORIENTATION, SIZE and PERFORMANCE CHARACTERISTICS							SHADING CALCULATION DATA			CALCULATED OUTCOMES - OK (if inputs are valid)								
	Glazing element	Orien	tation		Size		Perfor	mance	P&H or	device	Expo	osure	Size	Condu	Conductance - PASSED		Solar heat gain - PASSED	
							Total						Area		Element share		Element share	
		Floor	Floor	Height	Width	Area	U-Value	SHGC	P	н	P/H	E	used		of % of	SHGC x	of % of	
🔊 ID	Description (optional)	type A	type B	(m)	(m)	(m²)	(NFRC)	(NFRC)	(m)	(m)		factor	(m²)	U x area	allowance used	E x area	allowance used	
1	BD1 W1	S		1.80	1.80	3.24	6.2	0.77	1			0.64	3.24	20.1	12% of 98%	1.6	8% of 62%	
2	BD1 W12	E		1.00	1.50	1.50	6.2	0.77	Ϊ			1.21	1.50	9.3	6% of 98%	1.4	7% of 62%	
3	WC1 W11	E		2.00	0.60	1.20	6.2	0.77				1.21	1.20	7.4	4% of 98%	1.1	6% of 62%	
4	BD2 W4	W		1.20	1.80	2.16	6.2	0.77				1.19	2.16	13.4	8% of 98%	2.0	10% of 62%	
5	BD3 W3	S		1.80	1.80	3.24	6.2	0.77				0.64	3.24	20.1	12% of 98%	1.6	8% of 62%	
6	W5	N		1.00	1.20	1.20	6.2	0.77				0.96	1.20	7.4	4% of 98%	0.9	5% of 62%	
7	W2	S		2.10	0.30	0.63	6.2	0.77				0.64	0.63	3.9	2% of 98%	0.3	2% of 62%	
8	W6	W		1.80	0.90	1.62	6.2	0.77				1.19	1.62	10.0	6% of 98%	1.5	8% of 62%	
9	W7	N		1.80	1.80	3.24	6.2	0.77				0.96	3.24	20.1	12% of 98%	2.4	12% of 62%	
10	W8	N		2.10	1.80	3.78	6.2	0.77				0.96	3.78	23.4	14% of 98%	2.8	14% of 62%	
11	W9	N		1.80	1.80	3.24	6.2	0.77				0.96	3.24	20.1	12% of 98%	2.4	12% of 62%	
12	W10	E		1.80	0.90	1.62	6.2	0.77				1.21	1.62	10.0	6% of 98%	1.5	8% of 62%	

IMPORTANT NOTICE AND DISCLAIMER IN RESPECT OF THE GLAZING CALCULATOR

If inputs (including air movement levels) are valid

The Glazing Calculator has been developed by the ABCB to assist in developing a better understanding of glazing energy efficiency parameters. While the ABCB believes that the Glazing Calculator, if used correctly, will produce accurate results, it is provided "as is" and without any representation or warranty of any kind, including that it is fit for any purpose or of merchantable quality, or functions as intended or at all. Your use of the Glazing Calculator is entirely at your own risk and the ABCB accepts no liability of any kind.

Copyright © 2010 – Australian Government, State and Territory Governments of Australia. All Rights Reserved

Glazing Calculator 2010 – Standard Aluminium Frame Double Glazing

Iding name/description									Cli	mate zo	ne			Cu	CSHGC
Star Dewlling Canberra										7			CONSTANTS	5.486	0.189
Floor Construction	Area								-			CONS	TANT REDUCED BY	15%	
1 Direct contact	120m ²		Wall insul	ation conce	ession (requ	ires increas	sed glazi	na strinae	ncv)			AD.J	USTED CONSTANT	4 663	
Movement Suspended		I	Table 3	12 1 36	Climate	zone 7 C	option ((a)(i)		-				Cu (only)	Cauge X Area
tandard Area of storey	120m ²							-91.9		-			ALLOWANCES	4.7	22.7
Area of glazing	26 7m ²	(22% 0	f area of	storev)									need thirded		
, nos or grazing		(
ber of rows preferred in table below		12	(as curren	tly displaye	ed)										
GLAZING ELEMENTS, ORIENT	ATION, SIZ	E and PEF	RFORMAN	CE CHAR	ACTERISTIC	CS	SHA	DING	CALC	ULATIO	N DATA		CALCULATE	OUTCOM	IES
Glazing element	Orientation	1	Size		Perfor	mance	P&H or	device	Expo	sure	Size	Condu	ctance - FAILED	Solar heat gain - PASSE	
					Total						Area	U x area	Element share	SHGC x	Element sha
	Facing	Height	Width	Area	U-Value	SHGC	P	Н	P/H	Es	used	/ winter	of % of	Es x	of % of
ID Description (optional)	sector	(m)	(m)	(m²)	(AFRC)	(AFRC)	(m)	(m)			(m²)	access	allowance used	area	allowance us
1 BD1 W1	S	1.80	1.80	3.24	4.6	0.69				0.64	3.24	0.66	12% of 116%	1.4	8% of 77%
2 BD1 W12	E	1.00	1.50	1.50	4.6	0.69				1.21	1.50	0.31	6% of 116%	1.3	7% of 77%
3 WC1 W11	E	2.00	0.60	1.20	4.6	0.69				1.21	1.20	0.24	4% of 116%	1.0	6% of 77%
4 BD2 W4	W	1.20	1.80	2.16	4.6	0.69				1.19	2.16	0.44	8% of 116%	1.8	10% of 779
5 BD3 W3	S	1.80	1.80	3.24	4.6	0.69				0.64	3.24	0.66	12% of 116%	1.4	8% of 77%
6 W5	N	1.00	1.20	1.20	4.6	0.69		1		0.96	1.20	0.24	4% of 116%	0.8	5% of 77%
7 14/2	S	2.10	0.30	0.63	4.6	0.69				0.64	0.63	0.13	2% of 116%	0.3	2% of 77%
1 112		4 00	0.90	1.62	4.6	0.69				1.19	1.62	0.33	6% of 116%	1.3	8% of 77%
8 W6	W	1.80								0.96	3 24	0.66	12% of 116%	0 4	120% of 770/
8 W6 9 W7	N	1.80	1.80	3.24	4.6	0.69				0.00	i	0.00	12/0 01 110/0	Z.1	12/0 01117
8 W6 9 W7 10 W8	N N N	1.80	1.80 1.80	3.24 3.78	4.6 4.6	0.69				0.96	3.78	0.77	14% of 116%	2.1	14% of 77%
8 W6 9 W7 10 W8 11 W9	N N N	1.80 1.80 2.10 1.80	1.80 1.80 1.80	3.24 3.78 3.24	4.6 4.6 4.6	0.69 0.69 0.69				0.96	3.78 3.24	0.77	14% of 116% 12% of 116%	2.1 2.5 2.1	14% of 77% 12% of 77%

Manuka, ACT

Glazing Calculator 2010 – Improved Aluminium Frame Double Glazing

Building	name/description									Cli	mate zo	ne			Cu	CSHGC
Star	Dewlling Canberra	-				-					7			CONSTANTS	5.486	0.189
torev	Floor Construction	Area											CONST	ANT REDUCED BY	15%	
1	Direct contact	120m ²	1	Wall incul	ation conce	esion (requ	ires increa	vizelo hos	na stringe	(von				USTED CONSTANT	4 663	
ir Move	ment Suspended	12011		Table 3.12.1.3b Climate zone 7 Option (a)(i)							ADU	USTED CONSTANT	Cu (only)	Course x Area		
Standard Area of storey 120m ²							4 7	22 7								
Area of storey 26 7m ² (20% of area of storey)								4.1	22.1							
	Area of glazing	20.7111-	(22%)	l area oi	storey)											
mber	of rows preferred in table below		12	las curren	tly displaye	d)										
		_		las sausi	nij alopiaje		-	_	-		_					
	GLAZING ELEMENTS, ORIENT	ATION, SIZE	E and PE	RFORMAN	ICE CHARA	CTERISTIC	S	SHA	DING	CALC	ULATIC	N DATA	CALCU	ILATED OUTCOME	S - OK (if i	nputs are valid
	Glazing element	Orientation	۱	Size		Perfor	mance	P&H or	device	Expo	sure	Size	Conduc	tance - PASSED	Solar heat gain - PASS	
						Total						Area	U x area	Element share	SHGC x	Element shar
_		Facing	Height	Width	Area	U-Value	SHGC	P	н	P/H	Es	used	/ winter	of % of	Es x	of % of
V ID	Description (optional)	sector	(m)	(m)	(m²)	(AFRC)	(AFRC)	(m)	(m)			(m²)	access	allowance used	area	allowance use
1	BD1 W1	S	1.80	1.80	3.24	3.6	0.69				0.64	3.24	0.51	12% of 90%	1.4	8% of 77%
2	BD1 W12	E	1.00	1.50	1.50	3.6	0.69				1.21	1.50	0.24	6% of 90%	1.3	7% of 77%
3	WC1 W11	E	2.00	0.60	1.20	3.6	0.69				1.21	1.20	0.19	4% of 90%	1.0	6% of 77%
4	BD2 W4	W	1.20	1.80	2.16	3.6	0.69				1.19	2.16	0.34	8% of 90%	1.8	10% of 77%
5	BD3 W3	S	1.80	1.80	3.24	3.6	0.69				0.64	3.24	0.51	12% of 90%	1.4	8% 01 / /%
6	VV5	N	1.00	1.20	1.20	3.6	0.69				0.96	1.20	0.19	4% of 90%	0.8	5% OT 77%
	VV2	S	2.10	0.30	0.63	3.0	0.69		-		0.64	0.63	0.10	2% of 90%	0.3	2% of 77%
8	VV6	VV	1.80	0.90	1.02	3.0	0.69				1.19	1.02	0.20	0% 01 90%	1.3	8% OT / 1%
9		N	1.80	1.80	3.24	3.0	0.69				0.90	3.24	0.00	12% 01 90%	2.1	12% 01 / 1%
10	VV8	N	2.10	1.00	3.10	3.0	0.69				0.90	3.18	0.00	14% of 90%	2.0	14% 0177%
11	W9	E	1.00	0.00	1.60	3.0	0.09		_		4 04	1.62	0.01	6% of 00%	2.1	904 of 7704
	VV IU	E	1.80	0.90	1.02	3.0	0.09				1.Z1	1.02	0.26	0% 0190%	1.4	0% 0177%

While the ABCB believes that the Glazing Calculator, if used correctly, will produce accurate results, it is provided "as is" and without any representation or warranty of any kind, including that it is fit for any purpose or of merchantable quality, or functions as intended or at all.

Energy Partners

Your use of the Glazing Calculator is entirely at your own risk and the ABCB accepts no liability of any kind.

Copyright © 2010 - Australian Government, State and Territory Governments of Australia. All Rights Reserved

Manuka, ACT

Change to Total Energy and Star Rating after Improvements to House

Total Energy (MJ/m²)

Change to Heating and Cooling Energy after the improvements of the house

Comparison of Different Windows

Seminar Format

Questions after each Section

- Introduction to the Regulations
- Envelope Requirements
- Fenestration (including roof glazing)
- From 5 Stars to 6 Stars
- Services: lighting, hot water, HVAC
- Mandatory Disclosure

What's new for residential lighting, hot water and HVAC in BCA 2010 (Part 3.12) ?

The following summary is courtesy of Greg Burghardt (Envirohome Pty Ltd)

- Lighting: the days of (legally) installing 50+ halogen downlights (producing 2 – 3 kilowatts of heat) in one dwelling are over
- General residential lighting: upper limit of 5 W/m² for hardwired lighting
- 200 m² home means 1 kW lighting total
- 1 kW allowance more than enough to power sufficient compact fluorescent lamps (CFLs) or light-emitting diode (LED) lamps for whole house
- BCA Lighting Calculator available as free download
- New table included for increasing ceiling insulation if penetrations (such as downlights) exceed 0.5% of the ceiling area.

The following summary is courtesy of Greg Burghardt (Envirohome Pty Ltd)

- Hot water: minimum energy performance standards (MEPS) for hot water systems including gas (5 stars or better under AS 4552), solar and heat pump (choose a cold climate proven make).
- See www.energyrating.gov.au
- Hot water pipes must be insulated:

The following summary is courtesy of Greg Burghardt (Envirohome Pty Ltd)

HVAC and other services: "Greenhouse intensity of heating and

hot water service. The overall requirement is that the...greenhouse gas emissions from each unit of the measured heating load does not exceed 100g CO_2 -e/MJ

- •OR renewable
- •OR reclaimed ... "
- swimming pools must only be heated by solar without boosting from electric resistance heating
- Increased stringency for building sealing: "...a draught protection device to be fitted to the bottom edge of an external swing door with other edges of an external door or window to be sealed by a rubber compression strip, fibrous seal or the like."
- Piping and ducting insulation requirements increased
- Evaporative coolers must be fitted with self-closing dampers

Ducts must be a lot better:

	Duct Wall U-V	alue (W/m2.K)	
Duct Description	Heating	Cooling	Indicative Annual Energy Savings over 2009
Foil only	2.65	4.04	
Pre-2009	1.37	1.37	
2009	0.89	0.89	
Duct boot	0.50	0.50	
2010	0.47	0.47	4.3%
Ultimate, 150mm dia	0.24	0.24	
Ultimate, 200mm dia	0.25	0.26	6.1%
Ultimate, 250mm dia	0.26	0.27	
Ultimate, 300mm dia	0.26	0.27	
Ultimate, 450mm dia	0.28	0.29	

Reverse-cycle heat pumps: www.energyrating.gov.au

Old Star	Min EER Min COP	
	(cooling)	(heating)
1	2.0	2.3
2	2.3	2.6
3	2.6	2.9
4	2.9	3.2
5	3.2	3.5
6	3.5	3.8
7	3.8	4.1
8	4.1	4.4
9	4.4	4.7
10	4.7	5.0
11	5.0	5.3

2000 Version

2010 Star	Min EER	Min COP
Rating	(cooling)	(heating)
1.0	2.75	2.75
1.5	3.00	3.00
2.0	3.25	3.25
2.5	3.50	3.50
3.0	3.75	3.75
3.5	4.00	4.00
4.0	4.25	4.25
4.5	4.50	4.50
5.0	4.75	4.75
5.5	5.00	5.00
6.0	5.25	5.25

2010 Version

Energy Partners, Manuka ACT 2009-2010

VathersAnalyse 🖷 Exempla	Ducting Zone Marce	Heating Temp 35
Written in reads in N ready to lo an UNACTIVE Ducting Zone B INACTIVE Ducting Zone C INACTIVE NACTIVE Assign ease Energy Zo a Ducting Zone C	Ducting Zone A Sigma UA Coeff to use for Cooling 1 Sigma UA Coeff to use for Heating INACTIVE Temp Zone For RefTemp for Duct Q Losses calcs 1 :	(degrees C) 1 3 3 . Cooling Temp 14 . (degrees C) 14 . Star Ratings for COP calculations
	Ducting Zone Name Ducting Zone B Sigma UA Coeff to use for Cooling INACTIVE Temp Zone For RefTemp for Duct Q Losses calcs 1	2010 □ 0 stars Star □ 0.5 stars Ratings □ 1.0 stars used □ 1.5 stars ☑ 2.0 stars ☑ 2.0 stars ☑ 2.5 stars ☑ 3.0 stars
	Ducting Zone Name Ducting Zone C Sigma UA Coeff to use for Cooling INACTIVE Temp Zone For RefTemp for Duct Q Losses calcs 1	☐ 3.5 stars ☐ 4.0 stars ☐ 4.5 stars ☐ 5.0 stars ☐ 5.5 stars ☐ 6.0 stars
	Assign each Energy Zone to a Ducting Zone assign a Ducting Zone assign Energy Zone 1 = to C Ducting Zone A C Ducting Zone B C Ducting Zone B	Hours to exclude from Peak Load calculations
	Location/Scenario Name	_

Metered Energy from "Exemplary NatHERS Analyser" - Energy Partners (C) 2009-2010

Seminar Format

Questions after each Section

- Introduction to the Regulations
- Envelope Requirements
- Fenestration (including roof glazing)
- From 5 Stars to 6 Stars
- Services: lighting, hot water, HVAC
- Mandatory Disclosure

Mandatory Disclosure

- Energy Efficiency Ratings (Sale of Premises) Act 1997
 - Requirement for EERs in effect in 1999
- Civil Law (Sale of Residential Property) Act 2003
- ACT Residential Tenancies Act
 - Amendment for EERs in effect in 1999

Landlords or their real estate agents are required to disclose any existing Energy Efficiency Ratings (EERs) in advertisements for properties to lease.

Rentals

Advertisements which include EER as a percent of total advertisements compared with benchmark

- Minimum compliance of 2.3% in April 2003 (month 48)
- Maximum compliance of 26.97% in Jan 2009 (month 117)
- Gap between actual and predicted values continuing to increase

Distribution of EER Advertisements Across the Star Bands

- Increasing trend of average advertised house price in Canberra for the period of 1999-2010
- Property with 5+ stars experienced the most fluctuation

Average Advertised sale price of homes across Canberra at beginning of July 2010

Note: Trend line shows average cost for Canberra homes approximately increase by \$3700 per star.

© Trevor Lee Energy Partners Manuka, ACT <u>www.exemplary.com.au</u>

Average Advertised sale price of homes across Canberra at beginning of July 2010

Note: Trend line shows average cost for Canberra homes approximately increase by \$14000 per star.

© Trevor Lee Energy Partners Manuka, ACT <u>www.exemplary.com.au</u>

Suburbs	Average sale Prices for 6 Stars
Belconnen	\$383,889
Bruce	\$409,938
Bonner	\$519,762
Casey	\$516,245
Franklin	\$552,557
City	\$463,454
Total Average	<u>\$474,307</u>

6 Stars Property types	Percentage	Average Prices	Weighted Average
Apartments/Flats	28%	\$428,120	\$119,873
Units/Townhouses	12%	\$375,958	\$45,115
House	41%	\$491,412	\$201,478
House and Land Package	19%	\$521,428	\$99,071
			<u>\$465,538</u>

Table. 1 Average 6 Star Homes Sale Prices at end of July 2010

Table. 2 Percentage of property types advertised for 6 Star Homes

ABS Study

- Modelling the relationship of energy efficiency attributes to the house price: the case of detached houses sold in the Australian Capital Territory in 2005 and 2006
- "The ACT housing market ... places a higher value on energy efficiency ... (ABS) found that a statistically significant relationship does exist."

"As a professional working in the real estate industry, it has become evident to me that the prospective property purchaser has become more aware of the importance of energy efficient housing.

Gone are the days when a prospective home owner budgets for kitchen and bathroom renovations, now basic energy efficient improvements like light fitting and insulation are considered must do's before moving into a new property.
I feel this reflects a change in Australian society on the whole, where the plight of the climate becomes more of an influence in people's every day living".

Johnathan Davis, Real Estate Agent

Commercial Building Disclosure Legislation

© Trevor Lee

Energy Partners Manuka, ACT

ACT www.exemplary.com.au

July 2010	Act commences – no disclosure obligation
1 November 2010	Implementation date – disclosure obligation commences for affected offices offered for sale, lease or sublease
	Transition period begins – NABERS Energy ratings are to be disclosed
mid-2011	BEECs can be obtained
31 October 2011	Transition period ends
1 November 2011	Full BEECs are to be disclosed from this date onwards

© Trevor Lee Energy Partners Manuka, ACT www.exemplary.com.au